BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

Part 1: Mixture Priors for Linear Settings

Marina Vannucci

Rice University, USA

PASI-CIMAT 04/28-30/2010

Part 1: Mixture Priors for Linear Settings

- Linear regression models (univariate and multivariate responses)
- Matlab code on simulated data
- Extensions to categorical responses and survival outcomes
- Applications to high-throughput data from bioinformatics
- Models that incorporate biological information

Regression Model

$$\mathbf{Y}_{n\times 1} = \mathbf{1}\alpha + \mathbf{X}_{n\times p}\boldsymbol{\beta}_{p\times 1} + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 \mathbf{I})$$

Introduce latent variable $\gamma = (\gamma_1, \dots, \gamma_p)'$ to select variables

$$\left\{ \begin{array}{ll} \gamma_j = 1 & \text{if variable } j \text{ included in model} \\ \gamma_j = 0 & \text{otherwise} \end{array} \right.$$

Specify priors for model parameters:

$$\beta_{j}|\sigma^{2} \sim (1 - \gamma_{j})\delta_{0}(\beta_{j}) + \gamma_{j}N(0, \sigma^{2}h_{j})$$

$$\alpha|\sigma^{2} \sim N(\alpha_{0}, h_{0}\sigma^{2})$$

$$\sigma^{2} \sim IG(\nu/2, \lambda/2)$$

$$p(\gamma) = \prod_{j=1}^{p} w^{\gamma_{j}}(1 - w)^{1 - \gamma_{j}}.$$

where $\delta_0(\cdot)$ is the Dirac function.

Posterior Distribution

Combine data and prior information into a posterior distribution \Rightarrow interest in posterior distribution

$$p(\gamma|\mathbf{Y},\mathbf{X}) \propto p(\gamma) \int f(\mathbf{Y}|\mathbf{X},\alpha,\boldsymbol{\beta},\sigma) p(\alpha|\sigma) p(\boldsymbol{\beta}|\sigma,\gamma) p(\sigma) d\alpha d\beta d\sigma$$

$$\begin{split} & p(\boldsymbol{\gamma}|\mathbf{Y},\mathbf{X}) \propto g(\boldsymbol{\gamma}) \\ & |\tilde{\mathbf{X}}'_{(\boldsymbol{\gamma})}\tilde{\mathbf{X}}_{(\boldsymbol{\gamma})}|^{-1/2}(\nu\lambda + \mathbf{S}_{\boldsymbol{\gamma}}^2)^{-(n+\nu)/2}p(\boldsymbol{\gamma}) \\ & \tilde{\mathbf{X}}_{(\boldsymbol{\gamma})} = \left(\begin{array}{c} \mathbf{X}_{(\boldsymbol{\gamma})}\mathbf{H}_{(\boldsymbol{\gamma})}^{\frac{1}{2}} \\ \textit{l}_{p\boldsymbol{\gamma}} \end{array} \right), \ \ \tilde{\mathbf{Y}} = \left(\begin{array}{c} \mathbf{Y} \\ 0 \end{array} \right) \\ & \mathbf{S}_{\boldsymbol{\gamma}}^2 = \tilde{\mathbf{Y}}'\tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}'\tilde{\mathbf{X}}_{(\boldsymbol{\gamma})}(\tilde{\mathbf{X}}'_{(\boldsymbol{\gamma})}\tilde{\mathbf{X}}_{(\boldsymbol{\gamma})})^{-1}\tilde{\mathbf{X}}'_{(\boldsymbol{\gamma})}\tilde{\mathbf{Y}} \end{split}$$

the residual sum of squares from the least squares regression of $\hat{\mathbf{Y}}$ on $\tilde{\mathbf{X}}_{(\gamma)}$. Fast updating schemes use Cholesky or QR decompositions with efficient algorithms to remove or add columns.

Model Fitting via MCMC

- With p variables there are 2^p different γ values. We use Metropolis as stochastic search.
- At each MCMC iteration we generate a candidate γ^{new} by randomly choosing one of these moves:
 - (i) Add or Delete: randomly choose one of the indices in γ^{old} and change its value.
 - (ii) Swap: choose independently and at random a 0 and a 1 in γ^{old} and switch their values.

The proposed γ^{new} is accepted with probability

$$\min \left\{ \frac{\rho(\gamma^{new}|\mathbf{X},\mathbf{Y})}{\rho(\gamma^{old}|\mathbf{X},\mathbf{Y})}, 1 \right\}.$$

Posterior inference

The stochastic search results in a list of visited models $(\gamma^{(0)}, \gamma^{(1)}, \ldots)$ and their corresponding relative posterior probabilities

$$p(\gamma^{(0)}|\mathbf{X},\mathbf{Y}),p(\gamma^{(1)}|\mathbf{X},\mathbf{Y})\dots$$

Select variables:

- in the "best" models, i.e. the γ 's with highest $p(\gamma | \mathbf{X}, \mathbf{Y})$ or
- with largest marginal posterior probabilities

$$p(\gamma_j = 1 | \mathbf{X}, \mathbf{Y}) = \int p(\gamma_j = 1, \gamma_{(-j)} | \mathbf{X}, \mathbf{Y}) d\gamma_{(-j)}$$

$$\approx \sum_{\boldsymbol{\gamma}: \gamma_j = 1} p\left(\mathbf{Y} | \mathbf{X}, \boldsymbol{\gamma}^{(t)}\right) p(\gamma^{(t)})$$

or more simply by empirical frequencies in the MCMC output

$$p(\gamma_i = 1|\mathbf{X}, \mathbf{Y}) = E(\gamma_i = 1|\mathbf{X}, \mathbf{Y}) \approx \#\{\gamma^{(t)} = 1\}$$

Multivariate Response

$$\mathbf{Y}_{n \times q} = \mathbf{1} \alpha' + \mathbf{X}_{n \times p} \mathbf{B}_{p \times q} + \mathbf{E}, \quad \mathbf{E}_i \sim N(0, \mathbf{\Sigma})$$

Variable selection via γ as

$$\mathbf{\textit{B}}_{j}|\mathbf{\Sigma}\sim(\mathbf{1}-\gamma_{j})\mathcal{I}_{0}+\gamma_{j}N(\mathbf{0},h_{j}\mathbf{\Sigma}),$$

with B_i the *j*-th row of **B** and \mathcal{I}_0 a vector of point masses at 0.

Need to work with matrix-variate distributions (Dawid, 1981):

$$Y - 1\alpha' - XB \sim \mathcal{N}(I_n, \Sigma)$$

$$egin{array}{lll} \mathbf{A} - oldsymbol{lpha}_0 & \sim & \mathcal{N}(h_0, oldsymbol{\Sigma}) \ \mathbf{B}_{oldsymbol{\gamma}} - \mathbf{B}_{0oldsymbol{\gamma}} & \sim & \mathcal{N}(\mathbf{H}_{oldsymbol{\gamma}}, oldsymbol{\Sigma}) \ oldsymbol{\Sigma} & \sim & \mathcal{IW}(\delta, oldsymbol{Q}). \end{array}$$

with \mathcal{IW} an inverse-Wishart with parameters δ and **Q** to be specified.

Posterior Distribution

Combine data and prior information into a posterior distribution ⇒ interest in posterior distribution

$$p(\gamma|\mathbf{Y},\mathbf{X}) \propto p(\gamma) \int f(\mathbf{Y}|\mathbf{X},\alpha,\mathbf{B},\mathbf{\Sigma}) p(\alpha|\mathbf{\Sigma}) p(\mathbf{B}|\mathbf{\Sigma},\gamma) p(\mathbf{\Sigma}) d\alpha d\mathbf{B} d\mathbf{\Sigma}$$

 $p(\gamma|\mathbf{Y},\mathbf{X}) \propto q(\gamma) =$

$$|\tilde{\mathbf{X}}'_{(\gamma)}\tilde{\mathbf{X}}_{(\gamma)}|^{-q/2}|\mathbf{Q}_{\gamma}|^{-(n+\delta+q-1)/2}p(\gamma)$$
 $\tilde{\mathbf{X}}_{(\gamma)} = \begin{pmatrix} \mathbf{X}_{(\gamma)}\mathbf{H}_{(\gamma)}^{\frac{1}{2}} \end{pmatrix}, \quad \tilde{\mathbf{Y}} = \begin{pmatrix} \mathbf{Y} \\ \mathbf{0} \end{pmatrix}$

$$\mathbf{Q}_{\boldsymbol{\gamma}} = \mathbf{Q} + \tilde{\mathbf{Y}}'\tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}'\tilde{\mathbf{X}}_{(\boldsymbol{\gamma})}(\tilde{\mathbf{X}}'_{(\boldsymbol{\gamma})}\tilde{\mathbf{X}}_{(\boldsymbol{\gamma})})^{-1}\tilde{\mathbf{X}}'_{(\boldsymbol{\gamma})}\tilde{\mathbf{Y}}$$

It can be calculated via *QR*-decomposition (Seber, ch.10, 1984). Use *qrdelete* and *qrinsert* algorithms to remove or add a column.

Prediction

Prediction of future Y^f given the corresponding \mathbf{X}^f can be done:

as posterior weighted average of model predictions (BMA)

$$p(\mathbf{Y}^f|\mathbf{X},\mathbf{Y}) = \sum_{oldsymbol{\gamma}} p(\mathbf{Y}^f|\mathbf{X},\mathbf{Y},oldsymbol{\gamma}) p(oldsymbol{\gamma}|\mathbf{X},\mathbf{Y})$$

with $p(\mathbf{Y}^f|\mathbf{X},\mathbf{Y},\gamma)$ a matrix-variate T distribution with mean $\mathbf{X}^f\hat{\mathbf{B}}_{\gamma}$

$$\hat{\mathbf{Y}}_f = \sum_{oldsymbol{\gamma}} \left(\mathbf{X}_{oldsymbol{\gamma}}^f \hat{\mathbf{B}}_{oldsymbol{\gamma}}
ight)
ho(oldsymbol{\gamma} | \mathbf{X}, \mathbf{Y})$$

$$\hat{\mathbf{B}}_{\boldsymbol{\gamma}} = (\mathbf{X}_{\boldsymbol{\gamma}}'\mathbf{X}_{\boldsymbol{\gamma}} + \mathbf{H}_{\boldsymbol{\gamma}}^{-1})^{-1}\mathbf{X}_{\boldsymbol{\gamma}}'\mathbf{Y}$$

- as LS or Bayes predictions on single best models
- as LS or Bayes predictions with "threshold" models (eg, "median" model) obtained from estimated marginal probabilities of inclusion.

Prior Specification

Priors on α and Σ vague and largely uninformative

$$oldsymbol{lpha}' - oldsymbol{lpha}'_0 \sim \mathcal{N}(h, oldsymbol{\Sigma}), \quad oldsymbol{lpha}_0 \equiv 0, h
ightarrow \infty,$$
 $oldsymbol{\Sigma} \sim \mathcal{IW}(\delta, oldsymbol{Q}), \quad \delta = 3, oldsymbol{Q} = k oldsymbol{I}$

Choices for H_{γ} :

- ullet $\mathbf{H}_{oldsymbol{\gamma}} = c * (\mathbf{X}_{oldsymbol{\gamma}}' \mathbf{X}_{oldsymbol{\gamma}})^{-1}$ (Zellner g-prior)
- $\mathbf{H}_{\gamma} = c * diag(\mathbf{X}'_{\gamma}\mathbf{X}_{\gamma})^{-1}$
- $\bullet \ \mathbf{H}_{\boldsymbol{\gamma}} = c * I_{\boldsymbol{\gamma}}$

Choice of $w_j = p(\gamma_j = 1)$: $w_j = w$, $w \sim Beta(a, b)$ (sparsity). Also, choices that reflect prior information (e.g., gene networks).

Advantages of Bayesian Approach

- Past and collateral information through priors
- n << p</p>
- Rich modeling via Markov chain Monte Carlo (MCMC) (for p large)
- Optimal model averaging prediction
- Extends to multivariate response

Main References

- GEORGE, E.I. and MCCULLOCH, R.E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88, 881–889.
- GEORGE, E.I. and McCulloch, R.E. (1997). Approaches for Bayesian Variable Selection. Statistica Sinica, 7, 339–373.
- MADIGAN, D. and YORK, J. (1995). Bayesian Graphical Models for Discrete Data. International Statistical Review, 63, 215–232
- BROWN, P.J., VANNUCCI, M. and FEARN, T. (1998). Multivariate Bayesian Variable Selection and Prediction. *Journal of the Royal* Statistical Society, Series B, 60, 627–641.
- BROWN, P.J., VANNUCCI, M. and FEARN, T. (2002). Bayes model averaging with selection of regressors. *Journal of the Royal Statistical Society, Series B*, 64(3), 519–536.

Additional References

- Use of g-priors:
 - LIANG, F., PAULO, R., MOLINA, G., CLYDE, M. and BERGER, J. (2008). Mixture of g priors for Bayes variable section. *Journal of the American Statistical Association*, **103**, 410-423.
- Improving MCMC mixing: BOTTOLO, L. and RICHARDSON, S. (2009). Evolutionary stochastic search. Journal of Computational and Graphical Statistics, under revision. The authors propose an evolutionary Monte Carlo scheme combined with a parallel tempering approach that prevents the chain from getting stuck in local modes.
- Multiplicity:
 - SCOTT, J. and BERGER, J. (2008). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. *The Annals of Statistics*, to appear. The marginal prior on γ contains a non-linear penalty which is a function of p and therefore, as p grows, with the number of true variables remaining fixed, the posterior distribution of w concentrates near 0.

Code from my Website

- bvsme_fast: Bayesian Variable Selection with fast form of QR updating
- Metropolis search
- gPrior or diagonal and non-diagonal selection prior
- Bernoulli priors or Beta-Binomial prior
- Predictions by LS, BMA and BMA with selection

http://stat.rice.edu/~marina

Probit Models with Binary Response

- Response with G = 2 classes: z_i ∈ {0,1} associated with a set of p predictors X_i, i = 1,...,n.
- Data augmentation: Latent (unobserved) y_i linearly associated with the X_i's

$$y_i = \alpha + \mathbf{X}_i' \boldsymbol{\beta} + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2 = 1), \quad i = 1, \dots, n.$$

with intercept α and coefficient vector $\beta_{p\times 1}$.

Association

$$z_i = \begin{cases} 0 & \text{if } y_i < 0 \\ 1 & \text{if otherwise} \end{cases}$$

Probit Models with Multinomial Response

- Response with G classes: $z_i \in \{0, 1, ..., G-1\}$ associated with a set of p predictors $\mathbf{X}_i, i = 1, \cdots, n$ (gene expressions).
- Data augmentation: Latent (unobserved) vector Y_i linearly associated with the X_i's

$$\mathbf{Y}_i = \boldsymbol{\alpha}' + \mathbf{X}_i' \mathbf{B} + \mathbf{E}_i, \ \mathbf{E}_i \sim N(0, \boldsymbol{\Sigma}), \qquad i = 1, \dots, n.$$

with intercepts $\alpha_{(G-1)\times 1}$ and coefficient matrix $\mathbf{B}_{p\times (G-1)}$.

Association

$$z_i = \begin{cases} 0 & \text{if } y_{ig} < 0 \text{ for each } g \\ g & \text{if } y_{ig} = \max_{1 \le g \le G-1} \{y_{ig}\} \end{cases}$$

Variable Selection

• We introduce a binary latent vector γ for variable selection

$$\left\{ \begin{array}{l} \gamma_j = 1 \quad \text{if variable } j \text{ discriminate the samples} \\ \gamma_j = 0 \quad \text{otherwise} \end{array} \right.$$

• A mixture prior is placed on the *j*th row of **B**, given γ

$$\mathbf{B}_i \sim (1 - \gamma_i)\mathcal{I}_0 + \gamma_i N(0, c\Sigma)$$

- Assume γ_i 's are independent Bernoulli variables
- Combine data and priors into posterior $p(\gamma|\mathbf{X},\mathbf{Y})$. Inference is complicated because response variable is latent.
- $\Sigma \sim IW(\delta; \mathbf{Q}), \ \alpha \sim N(0, h_0 \Sigma), \ \text{large } h_0.$

We sample (γ, \mathbf{Y}) by Metropolis within Gibbs

- Metropolis step to update γ from $[\gamma | \mathbf{X}, \mathbf{Z}, \mathbf{Y}]$. We update $\gamma^{(old)}$ to $\gamma^{(new)}$ by:
 - (a) Add/delete: randomly choose a γ_i and change its value.
 - **(b) Swap**: randomly choose a 0 and a 1 in γ^{old} and switch values.

The new candidate $\gamma^{(new)}$ is accepted with probability

$$\min\{\frac{\rho(\gamma^{(new)}|\mathbf{X},\mathbf{Z},\mathbf{Y})}{\rho(\gamma^{(old)}|\mathbf{X},\mathbf{Z},\mathbf{Y})},1\}$$

• We sample $(Y|\gamma, X, Z)$ from a *truncated* normal or t distribution with truncation based on Z.

Posterior Inference

Select variables that are in the "best" models

$$\widehat{\gamma}* = \underset{1 \leq t \leq M}{\operatorname{argmax}} \left\{ p(\gamma^{(t)} | \mathbf{X}, \mathbf{Z}, \widehat{\mathbf{Y}}) \right\}, \text{ with } \widehat{\mathbf{Y}} = \frac{1}{M} \sum_{t=1}^{M} \mathbf{Y}^{(t)}$$

Select variables with largest marginal probabilities

$$p(\gamma_i = 1 | \mathbf{X}, \mathbf{Z}, \hat{\mathbf{Y}})$$

• Predict future Y_f by a posterior predictive mean

$$\hat{\mathbf{Y}}_{\!f} = \sum_{oldsymbol{\gamma}} \hat{\mathbf{Y}}_{\!f(oldsymbol{\gamma})} \pi(oldsymbol{\gamma} | \hat{\mathbf{Y}}, \mathbf{X}, \mathbf{Z})$$

with $Y_{f(\boldsymbol{\gamma})} = \mathbf{1}\tilde{\alpha}' + \mathbf{X}_{f(\boldsymbol{\gamma})}\tilde{\mathbf{B}}_{\boldsymbol{\gamma}}$ and $\tilde{\boldsymbol{\alpha}}$, $\tilde{\mathbf{B}}_{\boldsymbol{\gamma}}$ based on $\hat{\mathbf{Y}}$

Code from my website

- bvsme_prob: Bayesian Variable Selection for classification with fast form of QR updating
- binary/multinomial/ordinal response
- Metropolis search
- gPrior or diagonal and non-diagonal selection prior
- Bernoulli priors or Beta-Binomial prior
- Predictions by LS, BMA and BMA with selection

http://stat.rice.edu/~marina

Logit Models

- More naturally interpretable in terms of odds ratios.
 Marginalization not possible.
- For binary data, a data augmented model is

$$\mathbf{z}_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i,$$

with ϵ_i a scale mixture of normals with marginal logistic,

$$\epsilon_i \sim N(0, \lambda_i)$$
 $\lambda_i = (2\psi_i)^2$
 $\psi_i \sim KS,$

with KS the Kolmogorov-Smirnov distribution.

- Variable selection is achieved by imposing mixture priors on β_j 's.
- Sampling schemes improve mixing by joint updates of correlated parameters, i.e, (γ, β) using a Metropolis-Hastings with proposal the full conditional of β and the add-delete-swap Metropolis for γ . Also, (\mathbf{z}, λ) from truncated logistics and rejection sampling.

Accelerated Failure Time models

We use accelerated failure time (AFT) models

$$\log(T_i) = \alpha + \mathbf{X}_i'\boldsymbol{\beta} + \varepsilon_i, \quad i = 1, \dots, n.$$

Observe $y_i = \min(t_i, c_i)$ and $\delta_i = I\{t_i \le c_i\}$, where c_i censoring time.

• We introduce augmented data $\mathbf{W} = (w_1, \dots, w_n)'$ to impute the censored survival times

$$\begin{cases} w_i = \log(y_i) & \text{if } \delta_i = 1 \\ w_i > \log(y_i) & \text{if } \delta_i = 0 \end{cases}$$

• We consider different distributional assumptions for ε_i .

- Introduce latent vector γ for variable selection.
- MCMC steps consist of
 - (1) Metropolis search to update γ from $f(\gamma | \mathbf{X}, \mathbf{W})$.
- (2) Impute censored failure times, w_i with $\delta_i = 0$, from $f(w_i | \mathbf{W}_{-i}, \mathbf{X}, \gamma)$.
- Inference on variables based on $p(\gamma_j = 1 | \mathbf{X}, \widetilde{\mathbf{W}})$ or $p(\gamma | \mathbf{X}, \widetilde{\mathbf{W}})$.
- Prediction of survival time for future patients

$$\widehat{\mathbf{W}}_f = \sum_{oldsymbol{\gamma}} \left(\mathbf{1} \widehat{lpha}' + \mathbf{X}_{f(oldsymbol{\gamma})} \widehat{eta}_{oldsymbol{\gamma}}
ight) p(oldsymbol{\gamma} | \mathbf{X}, \widetilde{\mathbf{W}}).$$

Predictive survivor function

$$P(T_f > t | \mathbf{X}_f, \mathbf{X}, \widetilde{\mathbf{W}}) \approx \sum_{\gamma} P\left(W > w | \mathbf{X}_f, \mathbf{X}, \widetilde{\mathbf{W}}, \gamma\right) p(\gamma | \mathbf{X}, \widetilde{\mathbf{W}}).$$

Code from my website

- bvsme_surv: Bayesian Variable Selection for AFT models with right censoring
- Metropolis search
- diagonal selection prior
- Bernoulli priors or Beta-Binomial prior

http://stat.rice.edu/~marina

Main References

- ALBERT, J.H. and CHIB, S. (1993), "Bayesian Analysis of Binary and Polychotomous Response Data", JASA, 88(422), 669-679.
- SHA, N., VANNUCCI, M., TADESSE, M.G., BROWN, P.J., DRAGONI, I., DAVIES, N., ROBERTS, T. C., CONTESTABILE, A., SALMON, N., BUCKLEY, C. and FALCIANI, F. (2004). Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage, *Biometrics*, 60, 812-819.
- HOLMES, C.C. and HELD, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1), 145-166.
- SHA, N., TADESSE, M.G. and VANNUCCI, M. (2006). Bayesian variable selection for the analysis of microarray data with censored outcome. *Bioinformatics*, 22(18), 2262-2268.

DNA microarrays

- DNA fragments arrayed on glass slide or chip
- Parallel quantification of thousands of genes in a single experiment
- Identify biomarkers for treatment strategies and diagnostic tools

Statistical Analyses

- Identification of differentially expressed genes (gene selection for sample classification)
- Discovery of subtypes of tissue/disease that respond differently to treatment (gene selection and sample clustering)
- Prediction of continuous responses (clinical outcome, survival time)
- The major challenge is the high-dimensionality of the data.

$$p \gg n$$

 Widely used approaches: t-test, ANOVA, Cox model on single genes (ignores joint effect of genes; multiple testing issue) or dimension reduction techniques, PCA, PLS (leads to linear combinations; cannot assess original variables). Lately emphasis on subset selection methods (LASSO, Bayesian models).

Identification of Biomarkers of Disease Stage

- Data consist of 11 early stage (duration less than 2 years) and 9 late stage (over 15 years) rheumatoid arthritis patients.
- mRNA samples extracted from peripheral blood and hybridized to custom-made cDNA arrays.
- 755 gene expressions. Logged and std-ed data
- Bernoulli prior with expected model size 10
- We ran six MCMC chains with very different starting γ vectors.

- Selected genes by best 10 models of each chain and of their union
- Small sets of functionally related genes involved in cytoskeleton remodeling and motility, and with lymphocytes' ability to respond to activation.
- .05(1/20) misclassification error.

Peak Selection for Protein Mass spectra

- Cancer classification based on mass spectra at 15,000 m/z ratios.
- x-axis: ratio of weight of a molecule to its electrical charge (m/z),
 y-axis: intensity ~ abundance of that molecule in the sample.
- Goal: identification of peaks (proteins or protein fragments) related to a clinical outcome or disease status

Serum spectra on 50 (10+11+29) subjects (SELDI-TOF). Ordinal response - tumor grade (ovarian cancer).

Data Processing

- Preprocessing:
 - Baseline subtraction
 - Denoising (often by wavelets)
 - Peak identification
 - Normalization
 - Alignment
- Analysis:
 - Model fitting
 - Validation

- Data processing results in 39 identified peaks.
- Probit model with Bayesian variable selection applied to 39 peaks.
- "Best" models with around 7 peptides (6 common).
- Misclassification errors (2/10, 8/11, 9/29)

Case Study on Breast Cancer (van't Veer et al. (2002))

- Microarray data on 76 patients, 33 who developed distant metastases within 5 years and 43 who did not (censored).
- Training and test sets (38+38 patients). About 5,000 genes.
 MSE=1.9 (with 11 genes).

Main References

- SHA, N., VANNUCCI, M., TADESSE, M.G., BROWN, P.J., DRAGONI, I., DAVIES, N., ROBERTS, T. C., CONTESTABILE, A., SALMON, N., BUCKLEY, C. and FALCIANI, F. (2004). Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage, *Biometrics*, 60, 812-819.
- KWON, D.W., TADESSE, M.G., SHA, N., PFEIFFER, R.M. and VANNUCCI, M. (2007). Identifying biomarkers from mass spectrometry data with ordinal outcome. *Cancer Informatics*, 3, 19–28.
- SHA, N., TADESSE, M.G. and VANNUCCI, M. (2006). Bayesian variable selection for the analysis of microarray data with censored outcome. *Bioinformatics*, 22(18), 2262-2268.
- TADESSE, M.G., SHA, N., KIM, S. and VANNUCCI, M. (2006).
 Identification of biomarkers in classification and clustering of high-throughput data. In *Bayesian Inference for Gene Expression and Proteomics*, K. Anh-Do, P. Mueller and M. Vannucci (Eds). Cambridge University Press.